Anomalous conductance quantization in carbon nanotubes.
نویسندگان
چکیده
Conductance measurements of carbon nanotubes containing gated local depletion regions exhibit plateaus as a function of gate voltage, spaced by approximately 1e(2)/h, the quantum of conductance for a single (nondegenerate) mode. Plateau structure is investigated as a function of bias voltage, temperature, and magnetic field. We speculate on the origin of this surprising quantization, which appears to lack band and spin degeneracy.
منابع مشابه
Crossover from Ballistic to Diffusive Thermal Transport in Carbon Nanotubes
We present a theoretical scheme that seamlessly handles the crossover from fully ballistic to diffusive thermal transport regimes and apply it to carbon nanotubes. At room temperature, the micrometer-length nanotubes belong to the intermediate regime in which ballistic and diffusive phonons coexist, and the thermal conductance exhibits anomalous nonlinear tube-length dependence due to this coex...
متن کاملNonequilibrium Green's function approach to phonon transport in defective carbon nanotubes.
We have developed a new theoretical formalism for phonon transport in nanostructures using the nonequilibrium phonon Green's function technique and have applied it to thermal conduction in defective carbon nanotubes. The universal quantization of low-temperature thermal conductance in carbon nanotubes can be observed even in the presence of local structural defects such as vacancies and Stone-W...
متن کاملElectrical and Thermal Transport in Carbon N anotubes
Owing to their atomic-level perfection, carbon nanotubes exhibit unusually high electrical and thermal conductivity. Our electrical transport calculations, performed using a scattering technique based on the Landauer-Biittiker formalism, suggest that the conductance of inhomogeneous multi-wall nanotubes may show an unusual fractional quantization behavior, in agreement with recent experimental ...
متن کاملBallistic conductance in quantum devices: from organic polymers to nanotubes
With the size of electronic devices approaching the nanometer scale, transition to self-assembly in molecular electronics systems appears to be technologically the next step to pursue. Quantum conductors with an especially high potential for applications are organic polymers and carbon nanotubes. The latter are being considered for use as both nonlinear electronic devices and as connectors betw...
متن کاملMultiwall carbon nanotubes as quantum dots.
We have measured the differential conductance of individual multiwall carbon nanotubes. Coulomb blockade and energy level quantization are observed. The electron levels are nearly fourfold degenerate (including spin) and their evolution in magnetic field (Zeeman splitting) agrees with a g factor of 2. In zero magnetic field the sequential filling of states evolves with spin S according to S = 0...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 94 2 شماره
صفحات -
تاریخ انتشار 2005